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Goals of the course

By the end of this course you should have learned

I How GLM works in general (and how it is implemented)
I How to analyze several common non-linear dependent variables
I How to interpret results of GLMs
I How to present results in a compellign way
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Structure of the course

I Monday: Introduction, binary response variables
I Tuesday: How GLM works in general, Maximum Likelihood

Estimation
I Wednesday: Results interpretation and quantities of interest
I Thursday: Categorical and ordered response variables
I Friday: Count variables
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General considerations

I Usually our theories are about relationships between concepts
I Concepts are measured, so we test relationships between

variables
I Modeling is

1. Describing a relationship between variables
2. Describing how our concepts are measured, AKA how the data

are generated

I GLM takes into account both aspects
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Describing relationships between variables

I Suppose we want to study the relationship between education
and income: more educated people have higher-paid jobs

I We measure income as the monthly net salary in Euro
I We measure education as the number of years spent in

full-time education
I In our model, the total variation of income consists of:

1. A systematic component: how income varies as a function of
education

2. A stochastic component: what is due to other causes, which
we can not explain with our data

I A model is a summary of the data in terms of the systematic
effect + a summary of the magnitude of the unexplained or
random variation
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Describing relationships between variables (2)

I A linear model is an assumption about the nature of the relationship
between income an education

I It describes how much income changes on average for a unit increase
in education

I It also describes how much of the variation of income is not explained
by education

yi = Xiβ + ei

I Where the systematic part is the average of Y given a value of X

µ = E (y |X ) = Xβ

I And the stochastic part is what is left unexplained

ei = yi − Xiβ
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Conceptually

I The systematic component defines the relationship between X
and Y, between education and income

I It looks at the variation of education to explain the variation of
income

I This is what our theories are (usually) about

I The stochastic component defines the distribution of Y
I It describes the variation of income
I When we have no predictors (i.e. when we do not know anything

about education), all the variation of income is stochastic
I We specify this component by making assumptions about the

statistical process that generated the values of income
I In linear models it is assumed to be “normal”
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β in practice
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e in practice
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e in practice (2)

Total variation of income
(before accounting for education)

Residual variation of income
(after accounting for education)
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Taking into account how data are generated

I Many social or political event take the form of a yes/no
occurrence

I Did a citizen vote or not?
I Did a voter choose to vote for the government or for the

opposition?
I Does a person have a job or not?

I What concept do we want to explain here?
I How can we relate other concepts (i.e. independent variables)

to it?
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The linear probability model

I Sure it is possible to analyze binary responses using linear regression
I This type of model is called linear probability model
I Let’s consider a voter who has to choose between voting for the

incumbent party or the opposition party

y =
{

1 if the incumbent is chosen
0 if the incumbent is not chosen

I We can model y as a linear function of people’s economic situation
compared to the year before

I The more their finances have improved (the higher the value of X)
the more likely they will vote for the government

yi = Xiβ + ei
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The linear probability model (2)

I The linear model implies that

E (y) = Xβ

I E(y) is the mean of y, which is just the share of y=1 in our data
I This is interpreted as a probability

E (y) = P(y = 1) = π

I I.e. the linear probability model predicts the mean of y, which
is the probability that y has value 1

I It is interpreted in the same way as with linear regression: for 1
point increase in X, β tells how much the probability that y=1
(that is π) increases
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LPM in practice

Example: Y = 0.51 + 0.32X
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Problems with the LPM

I Besides the violation of normality and homoskedasticity
assumptions (which can affect the validity of our results) there
are two more immediate concerns:
1. The LPM makes out-of-bounds predictions
2. The linear functional form might apply badly to a concept like

probability

I The first point is straightforward: what’s the predicted value of
Y when X = -2?

I The second point is trickier
I The linear functional form implies that π changes at a constant

rate, regardless the starting point of the predictor
I However, this is hardly the case
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On probability change

I Example: Bill is choosing whether to buy a product that costs
5e

I One factor influencing the decision is Bill’s wealth (X)
I We give him 1e, AKA we increase X of 1 unit
I How much does the probability that Bill buys the product

change?
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On probability change (2)

I Bill has 0e:
I Not a great improvement. Bill is still short of 4e, so the

probability that he buys the product won’t change much

I Bill is millionaire:
I If he didn’t buy the product yet, it’s not because of money.

Probably he doesn’t need it, or he doesn’t like it. Again, the
change in probability as X increases 1 point will be small

I Bill has 4e
I Now things are different. By giving Bill 1e, we change his state

from not being able to afford the product to being able to do so.
Increasing X of 1 unit at this point could have a huge effect
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The functional form

I The functional form describes how X relates to Y
I When we model a probability change, we are in fact modeling a

discrete event
I This implies that all the possible change of Y can be realized

only in one single “step” from 0 to 1
I For this relationship, a sigmoid functional form is more

appropriate
I For very low values of X, any increase will have a relatively little

impact
I As we move along the range of X, the effect of one unit

increase becomes larger and larger
I However, passed a certain point, the effect of one unit increase

in X becomes smaller again

I To specify the correct functional form is a fundamental step in
statistical modeling
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Sigmoid relationship
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Modeling probabilities with GLM

I The most common ways to model binary outcomes rely on this
assumption

I How can we work this out? With GLM
I We need to transform the probability of Y (i.e. the mean of Y)

in a way such that it can be related to X linerarly
I We do this using a mathematical function called link function
I The link function transforms a probability into a quantity called

linear predictor
I The linear predictor is the systematic component of the model,

and can be modeled in the same way as in “simple” linear
models
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GLM in a nutshell

At the most general level, GLM consists of 3 steps

1. Specify the distribution of the dependent variable
I This is our assumption about how the data are generated
I This is the stochastic component of the model

2. Specify the link function
I We “linearize” the mean of Y by transforming it into the linear

predictor
I It always has an inverse function called response function

3. Specify how the linear predictor relates to the independent
variables

I This is done in the same way as with linear regression
I This is the systematic component of the model
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Logit and Probit models

I To model probabilities of binary events, we need a function that
maps our linear predictor to a cumulative distribution function

I Two common functions are at the basis of the logit and the
probit models

I The two models work exactly in the same way, except they use
a different link function

I Let’s consider the linear predictor

η = Xβ

I To be mapped to the probability π with a response function
h():

π = h(η) = h(Xβ)
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Logit models

I We need to find a response function that turns a linear
unbounded distribution into a distribution that:

I Is bounded between 0 and 1
I Relates to X with a sigmoid functional form

I Logit models use the standard logistic cumulative distribution
function:

π = exp(η)
1 + exp(η) = exp(Xβ)

1 + exp(Xβ)
I And the link function is called logit function:

η = Xβ = log
(

π

1− π

)
I The part

(
π

1−π

)
is called “odds”, and refers to the probability

to observe an event versus its complement
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Probabilities, odds, and log odds

Probability Odds Logits
π π

1−π log
(

π
1−π

)
0.01 1/99 = 0.0101 -4.60
0.05 5/95 = 0.0526 -2.94
0.10 1/9 = 0.1111 -2.20
0.30 3/7 = 0.4286 -0.85
0.50 5/5 = 1 0.00
0.70 7/3 = 2.3333 0.85
0.90 9/1 = 9 2.20
0.95 95/5 = 19 2.94
0.99 99/1 = 99 4.60
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Probabilities, odds, and log odds (2)
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Probabilities, odds, and log odds (3)
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Probit models

I In probit models, the response function h() is the standard
normal CDF:

π = Φ(η) = Φ(Xβ)
I And the link function g() is the inverse:

π = Φ−1(η) = Φ−1(Xβ)

I However, the inverse function Φ−1 has no easy analytic
solution, so it is found numerically
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Logit vs. Probit functions
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Logit and Probit models

I Note from the figure that both functions are nearly linear for
the most of their range

I In fact the linear probability model leads to similar results,
except for extreme values of Y

I Logit and probit models produce identical predicted values, but
different coefficients

I Models using the logit link function are more common than
probit models

I This is also a matter of ease of interpretation:
I Essentially, logit models are linear models for log-odds
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A latent variable interpretation

I Binary response variables can be regarded more directly as a
measurement problem

I We can think of a continuous unobservable construct y∗,
e.g. the propensity to turnout at the next election

I We can’t observe y∗, we can only observe its manifest variable
y in two states, e.g. whether a persone says s/he will vote at
the next election or not

I In fact, a voter might be barely convinced to turn out, while
another might be enthusiastic about the election

I However, all we see is the discrete choice whether they will
vote (1) or not (0)
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A latent variable interpretation (2)

I y∗ is linked to y by the measurement equation:

yi =
{

0 when y∗i ≤ 0
1 when y∗i > 0

I The value 0 is an arbitrary threshold on y∗: when it is passed,
y switches from 0 to 1

I In this context we model:

y∗i = Xiβ + ei

I And the probability that yi = 1 is:

P(y∗i > 0) = P(Xiβ + ei > 0)
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A latent variable interpretation (3)

I Since y∗ is not observed, we can’t estimate its variance: we
need to fix it at a given value

I Different assumptions about the variance of e lead to different
model specifications:

I If Var(y∗) = π2/3, y∗ follows a standard logistic distribution
I If Var(y∗) = 1, y∗ follows a standard normal distribution

I Depending on which distribution of e we assume, solving the
equation in the previous slide produces formulations that are
equivalent to the logit or the probit model

I This approach requires more theorization – i.e. we need to find
a convincing definition of the latent variable

I However, in practice it produces identical results
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In sum

I Binary responses can not be related to our predictors linearly
I To model them, we need to transform their distribution in a

way that can be treated as in a linear model
I GLM requires us to:

I Make an assumption about the distribution of y
I Find a link function to make the distribution of y linear
I Model the transformed linear predictor

What we will see tomorrow

I How GLM for binary responses works with individual data
I How parameters in GLM are estimated
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