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Generalized Linear Modeling

3 steps of GLM

1. Specify the distribution of the dependent variable
I This is our assumption about how the data are generated
I This is the stochastic component of the model

2. Specify the link function
I We “linearize” the mean of Y by transforming it into the linear

predictor
I It has always an inverse function called “response function”"

3. Specify how the linear predictor relates to the independent
variables

I This is done in the same way as with linear regression
I This is the systematic component of the model

2 / 32



Some specifications

I In GLM, it is the mean of the dependent variable that is
transformed, not the response itself

I In fact, when we model binary responses, applying the link
function to the response itself will produce only values such as
−∞ and ∞

I How can we estimate the effect of individual predictors, going
through all the steps that we saw, when all we have is a string
of 0s and 1s?
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Estimation of GLM

I GLMs are usually estimated via a method called “Maximum
Likelihood” (ML)

I ML is one of the most common methods used to estimate
parameters in statistical models

I ML is a technique to calculate the most likely values of our
parameters β in the population, given the data that we
observed

I If applied to linear regression, ML returns exactly the same
estimates as OLS

I However, ML is a more general technique that can be applied
to many different types of models
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Maximum Likelihood Estimation

I The distribution of your data is described by a “probability
density function” (PDF)

I PDF tells you the relative probability, or likelihood, to observe
a certain value given the parameters of the distribution

I For instance, in a normal distribution, the closer a value is to
the mean, the higher is the likelihood to observe it (compared
to a value that is further away from the mean)

I The peak of the function (e.g. the mean of the distribution) is
the point where it is most likely to observe a value
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Likelihood: an example

I Within a given population, we know that IQ is distributed
normally, with mean 100 and standard deviation 15.

I We sample a random individual from the population
I What is more likely:

I That the IQ of the individual is 100 or
I That the IQ of the individual is 80?

I To answer this question we can look at the relative probabilities
to pick an individual with IQ = 100 and an individual with
IQ = 80
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Likelihood: an example (2)
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Likelihood: an example (3)

I In this example we knew the parameters and we plugged in the
data to see how likely it is that they will appear in our sample

I Clearly, an individual with IQ = 100 is more likely to be
observed than an individual with IQ = 80, given that the mean
of the population is 100

I However, let’s suppose that:
1. We don’t know the mean
2. We pick two random observations: IQ = [80, 100]
3. We assume that IQ is normally distributed

I What is our best guess about the value of the mean?
I This is what ML estimation is all about:

I We know the data, we assume a distribution, we need to
estimate the parameters
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Estimating parameters with ML

I Another example: government approval
I Y is our outcome variable, with two possible states:

I Approve, y = 1, with probability p1
I Disapprove, y = 0, with probability p0
I p0 + p1 = 1

I We do not know p. In order to find it, we need to take a
sample of observations and assume a probability distribution

I We want to estimate the probability that citizens support the
government (p1) on a sample of N = 10 citizens

I We observe Y = [1, 1, 0, 1, 0, 1, 0, 1, 0, 1]
I What is the most likely value of p1?
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Specify the distribution

I Y follows a binomial distribution with two parameters:
I N, the number of observations
I p, the probability to approve the government

I The probability to observe an outcome Y in a sample of size N
is given by the formula:

P(Y |N, p) = N!
(N − Y )!Y !p

Y (1− p)N−Y

I So in our case:

P(6|10, p) = 10!
(10− 6)!6!p

6(1− p)10−6

I To find the most likely value of p given our data, we can let p
vary from 0 to 1, and calculate the corresponding likelihood

10 / 32



Resulting likelihoods

b.fun <- function(p) {
factorial(10)/(factorial(10-6)*factorial(6))*p^6*(1-p)^(10-6)

}
p <- seq(0, 1, by = 0.1)
xtable(data.frame(p = p, likelihood = b.fun(p)))

p likelihood
1 0.00 0.00
2 0.10 0.00
3 0.20 0.01
4 0.30 0.04
5 0.40 0.11
6 0.50 0.21
7 0.60 0.25
8 0.70 0.20
9 0.80 0.09
10 0.90 0.01
11 1.00 0.00
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Maximum likelihood

I The values in the right column are relative probabilities
I They tell us, for an observed value Y, how likely it is that it was

generated by a population characterized by a given value of p
I Their absolute value is essentially meaningless: they make

sense with respect to one another
I Likelihood is a measure of fit between some observed data and

the population parameters
I A higher likelihood implies a better fit between the observed

data and the parameters
I The goal of ML estimation is to find the population parameters

that are more likely to have generated our data
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Individual data

I Our example was about grouped data: we modeled a proportion
I What do we do with individual data, where Y can take only

values 0 or 1?
I ML estimation can be applied to individual data too, we just

need to specify the correct distribution of Y
I For binary data, this is the Bernoulli distribution: a special case

of the binomial distribution with N = 1:

P(y |p) = py (1− p)1−y

I Once we have a likelihood function for individual observations,
the sample likelihood is simply their product:

L(p|y , n) =
n∏

i=1
pyi (1− p)1−yi
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Individual data (2)

I Let’s calculate it by hand with our data
I Remember: Y = [1, 1, 0, 1, 0, 1, 0, 1, 0, 1]
I What’s the likelihood that p = 0.5?

L(p = 0.5|6, 10) = (0.51∗(1−0.5)0)6∗(0.50∗(1−0.5)1)4 = 0.0009765625

I What about p = 0.6?

L(p = 0.6|6, 10) = (0.61∗(1−0.6)0)6∗(0.60∗(1−0.6)1)4 = 0.001194394

I What about p = 0.7?

L(p = 0.7|6, 10) = (0.71∗(1−0.7)0)6∗(0.70∗(1−0.7)1)4 = 0.0009529569
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Likelihood and Log-Likelihood

I The sample likelihood function produces extremely small
numbers: this creates problems with rounding

I Moreover, working with multiplications can be computationally
intensive

I These issues are solved by taking the logarithm of the
likelihood function, the “log-likelihood”

I The formula becomes:

l(p|y , n) =
n∑

i=1
yi log(p) + (1− yi)log(1− p)

I It still qualifies relative probabilities, but on a different scale
I Since likelihoods are always between 0 and 1, log-likelihoods

are always negative
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Individual Likelihood and Log-Likelihood

p L logL
1 0.0 0.0000000
2 0.1 0.0000007 -14.237
3 0.2 0.0000262 -10.549
4 0.3 0.0001750 -8.651
5 0.4 0.0005308 -7.541
6 0.5 0.0009766 -6.931
7 0.6 0.0011944 -6.730
8 0.7 0.0009530 -6.956
9 0.8 0.0004194 -7.777

10 0.9 0.0000531 -9.843
11 1.0 0.0000000
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How to estimate parameters with ML?

I For simple problems, we can just plug in all possible values of
our parameter of interest, and see which one corresponds to
the maximum likelihood (or log likelihood) from the table

I However, for more complex problems, we need to search
directly for the maximum

I How? We look at the first derivative of the log-likelihood
function with respect to our parameters

I The first derivative tells you how steep is the slope of the
log-likelihood function at a certain value of the parameters

I When the first derivative is 0, the slope is flat: the function has
reached a peak

I If we set the result of the derivative formula to 0 and solve for
the unknown parameter values, the resulting values will be the
maximum likelihood estimates
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Log likelihood function and first derivative
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How to estimate the parameters? (2)

I We also need the second derivative of the function. Why?
I When it is positive, the function is convex, so we reached a
“valley” rather than a peak

I When it is negative, it confirms that the function is concave,
and we reached a maximum

I Moreover, we use second derivatives to compute the standard
errors:

I The second derivative is a measure of the curvature of a
function. The steeper the curve, the more certain we are about
our estimates

I The matrix of second derivatives is called “Hessian”
I The inverse of the Hessian matrix is the variance-covariance

matrix of the estimates
I The standard errors of ML estimates are the square root of the

diagonal entries of this matrix
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In sum

I The likelihood function tells us the relative probability that a
given set of population parameters has generated the data

I Maximum Likelihood is the common way to estimate
parameters in GLM

I It’s a very flexible technique, and can be applied to many
different distributions
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ML estimation of Logit models

I How do we apply this to a regression model?
I Say we want to estimate a vector of parameters β
I Our response variable follows a binomial distribution with

N = 1:
P(yi |π) = πyi (1− π)1−yi

I The likelihood function L(π) is the product across individual
contributions:

L(π|y) =
n∏

i=1
πyi (1− π)1−yi
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Likelihood function of a Logit model

I Solving the likelihood equation from the previous slide leads to:

L(π|y) =
n∏

i=1

(
π

1− π

)yi
(1− π)

I Remember the logit function:

πi
1− πi

= exp(Xiβ) and 1− πi = 1
1 + exp(Xiβ)

I Plugging this into the likelihood function for the binomial
model leads to the probability function of the data in terms of
the parameters of the logit model:

L(β|y ,X ) =
n∏

i=1
exp(Xiβ)yi 1

1 + exp(Xiβ)
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Log-likelihood function of a Logit model

I However, we prefer to take the log-likelihood function:

l(β|y ,X ) =
n∑

i=1
yi log(π) + (1− yi)log(1− π)

I Which, after solving and plugging in the logit function,
becomes:

l(β|y ,X ) =
n∑

i=1
yiXiβ −

n∑
i=1

log [1 + exp(Xiβ)]

23 / 32



ML Estimation

I At this point we can look for the maximum likelihood by taking
the first derivative of the equation in respect to β, and setting
it to 0

I This is usually done iteratively:
I We choose some arbitrary starting values of β
I We evaluate the vector of partial derivatives of the

log-likelihood function
I We update the values of β using the information given by the

partial derivatives
I We stop when we reach values sufficiently close to 0

I There are several optimizing algorithms, more or less precise
(and fast)

I The good news is, the software will take care of this
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Wald test

I When we estimate one or more coefficients in a logit model, we
typically want to test for the null hypothesis H0 : β = 0

I This is done with the Wald test, which is equivalent to the
t-test done for linear regression

Wald = β

seβ

I The Wald statistic is approximately normally distributed, so it
is interpreted in the same way as z-scores
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Likelihood and model fit

I We want to test whether the fit of our model improves as we
add predictors

I Fit refers to the likelihood that a model with a given set of
predictors has generated the observed data

I The likelihood ratio test compares the log-likelihood of our
“unrestricted” model (UM) with the one of a “restricted” model
where all βs are set to 0 (RM)

LR = −2(l(βRM)− l(βUM))

I It requires that the two models are nested:
I All the terms in the restricted model occur also in the

unrestricted model
I In other words, the restricted model must not include

parameters (or observations) that are not included in the
unrestricted model
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Likelihood and model fit (2)

I The same logic applies to the deviance test
I Here we compare the fit of the proposed model (PM) with the

fit of a “saturated” model (SM)
I The saturated model has one parameter per observation, so it

describes the data perfectly

D = −2(l(βPM)− l(βSM))

I R reports two measures of deviance:
I The residual deviance, which is equal to −2l(βPM)
I The null deviance, which is equal to −2l(βNM), where NM is a

model that includes only the intercept

I These measures are different from D
I However, if compared to each other, they describe the increase

in model fit from the null model
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Likelihood and model fit (3)

I Other statistics that R reports are the Akaike Information
Criterion and the Bayesian Information Criterion

I Both measures are based on the log-likelihood, but penalize for
the number of parameters included in the model

I Moreover, the BIC takes into account the number of
observations as well

AIC = −2l(β) + 2p

BIC = −2l(β) + log(n)p
I Where p is the number of parameters in the model, and n is

the number of observations
I In both cases, the smaller the value, the better the model fit
I They can be used to compare models that are not nested,

i.e. with different parameters
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Classification table

I An alternative strategy to assess the fit of a model is to look at
the quality of the predictions made by the model

I Logit and probit models can produce predicted values of π by
multiplying the observed X s with the estimated βs

I We can predict individual responses by setting a threshold
above which we expect y = 1 (e.g. π = 0.5)

I By comparing the predicted with the observed values of y ,
we can determine how well the model describes the data
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Classification table (2)

Predicted

Observed 0 1
0 n00 n01
1 n10 n11

I A useful measure is the percentage of correctly classified cases:

n00 + n11
n00 + n01 + n10 + n11

I Since we could achieve 0.5 with a series of coin flips, a
good-fitting model should produce a much larger value
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Hosmer–Lemeshow test

I The Hosmer–Lemeshow test consists of 3 steps:

1. We divide the distribution of our predicted π in quantiles
2. For each quantile, we calculate the expected number of y = 1

and y = 0
3. And we compare it with the observed number of y = 1 and

y = 0

I We perform a Pearson’s chi-squared test to see whether the
difference between the expected and observed distribution of y
is significant

I If it’s not, then the model fits the data well
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The pseudo R-square

I Sometimes, articles report measures of “pseudo R-square”
I SPSS and Stata report them too
I There are different kinds of pseudo R-square. The most famous

are probably the Cox & Snell and the Nagelkerke R2 reported
by SPSS

I Generally speaking, these measures involve comparing the
likelihood of the null model (the model with the intercept only)
to the likelihood of our model.

I Pseudo R-squares are not a measure of explained variance
I They can be interpreted as a measure of proportional

improvement of fit
I Some of them are not even bounded between 0 and 1
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