Intro to GLM - Day 3: Quantities of interest

Federico Vegetti
Central European University

ECPR Summer School in Methods and Techniques

Reporting the model results

- Let's recall the LPM

- Where $\beta_{0}=0.51$ and $\beta_{1}=0.32$
- What do these numbers mean?

LPM vs Logit

LPM

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	0.51057	0.01223	41.73	$<2 e-16$	$* * *$
X	0.32185	0.01240	25.95	$<2 e-16$	$* * *$

Logit

Coefficients:

	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$	
(Intercept)	0.07675	0.08449	0.908	0.364	
X	2.25346	0.14165	15.908	$<2 e-16$	$* * *$

- Where:
- $\exp (0.07675)=1.079772$
$-\exp (2.25346)=9.52062$
- What do these numbers mean?
- The odds are a ratio of the probability that $y_{i}=1$ to the probability that $y_{i}=0$
- When we have probability $p=0.5$, then $0.5 / 0.5=1$. The odds are 1 to 1
- If we apply for a job where we have 80% chance of success, then $0.8 / 0.2=4$. The odds are 4 to 1 : the chances of success are 4 times larger than the chances of failure
- Recall:

$$
\operatorname{logit}(\pi)=\log \left(\frac{\pi}{1-\pi}\right)=X \beta
$$

- Odds are what we obtain when we exponentiate the coefficients of a logistic regression
- The odds are a ratio of the probability that $y_{i}=1$ to the probability that $y_{i}=0$
- When we have probability $p=0.5$, then $0.5 / 0.5=1$. The odds are 1 to 1
- If we apply for a job where we have 80% chance of success, then $0.8 / 0.2=4$. The odds are 4 to 1 : the chances of success are 4 times larger than the chances of failure
- Recall:

$$
\operatorname{logit}(\pi)=\log \left(\frac{\pi}{1-\pi}\right)=X \beta
$$

- Odds are what we obtain when we exponentiate the coefficients of a logistic regression
- Odds of what against what?
- What do the odds expressed by the coefficient of X mean?

Odds ratios

- Let's consider a variable Y measuring on a population of 500 students whether they passed an English language test (1) or not (0)

$\mathrm{Y}=0$	$\mathrm{Y}=1$
147	353

- Here $353 / 147=2.40$ means that the odds of passing the test are about 2.40 to 1
- If we run a logit regression with intercept only, we get

	Estimate	Std. Error	z	value	$\operatorname{Pr}(>\|z\|)$	
(Intercept)	0.87604	0.09816	8.924	$<2 e-16$	$* * *$	

- This makes sense since $\log (353 / 147)=0.8760355$

Odds ratios - dummy variables

- Now let's consider a dummy variable Z indicating whether the students attended an English conversation group organized by the student union (1) or not (0)

	$\mathrm{Y}=0$	$\mathrm{Y}=1$	Total
$\mathrm{Z}=0$	111	204	315
$\mathrm{Z}=1$	36	149	185
Total	147	353	500

- Here, the odds of $Y=1$ are:
- $204 / 111=1.837838$ when $Z=0$
- $149 / 36=4.138889$ when $Z=1$
- And the odds ratio of passing the test $(Y=1)$ for those who went to the conversation group $(Z=1)$ with respect to those who did not $(Z=0)$ is $(149 / 36) /(204 / 111)=2.25$
- Attending the English conversation group makes the odds of passing the language test 2.25 times larger than not attending it

Odds ratios - dummy variables (2)

- If we run a logit of Y on Z we get

	Estimate	Std. Error	z	value	$\operatorname{Pr}(>\|z\|)$	
(Intercept)	0.6086	0.1179	5.16	$2.47 e-07$	$* * *$	
Z	0.8118	0.2200	3.69	0.000224	$* * *$	

- Here the intercept
$\checkmark \exp (0.6086)=1.84$ are the odds of observing $Y=1$ when $Z=0$
- When $Z=0$, the probability of success is about 84% larger then the probability of failure
- And the slope
$\Rightarrow \exp (0.8118)=2.25$ is the ratio of the odds of $Y=1$ when $Z=1$ with respect to when $Z=0$
- The odds of success when students attend the conversation group are about 125% larger than when they do not

Odds ratios - continuous variables

- Further, let's look at the effect of students' standardized score on an "extrovert personality" test, $\mathrm{X}(\mu=0.04 ; \sigma=0.95)$

	Estimate	Std. Error	z	value	$\operatorname{Pr}(>\|z\|)$	
(Intercept)	1.1768	0.1278	9.206	$<2 e-16$	$* * *$	
X	1.5834	0.1639	9.662	$<2 e-16$	$* * *$	

- Here the intercept refers to the odds of $Y=1$ when $X=0$, so $\exp (1.1768)=3.24$
- The exponentiated slope coefficient is the change in odds for one unit increase of X
- $\exp (1.5834)=4.87$ means that every unit increase of X increases the odds of success by a factor of 4.9
- When $X=1, \exp (1.1768+1.5834 * 1)=15.8$: students who are 1 SD more extroverted than the average are 16 times more likely to pass the test than to fail
- When $X=2$, $\exp (1.1768+1.5834 * 2)=76.98$: students who are 2 SD more extroverted than the average are 77 times more likely to pass the test than to fail
- Note that $76.98 / 15.8=4.87=\exp (1.5834)$

Odds ratios - interactions

- Let's consider a full interaction model

	Estimate	Std. Error	z	value	$\operatorname{Pr}(>\|z\|)$	
(Intercept)	0.7787	0.1417	5.497	$3.86 e-08$	$* * *$	
X	1.3745	0.1813	7.582	$3.39 e-14$	$* * *$	
Z	1.6502	0.3894	4.238	$2.26 e-05$	$* * *$	
$\mathrm{X}: \mathrm{Z}$	1.2022	0.4831	2.488	0.0128	$*$	

- Here we have two equations, one for $Z=0$ and one for $Z=1$
- The odds ratio of $Z=1$ to $Z=0$ is $\exp (1.6502)=5.21$
- This ratio applies only when $X=0$
- Among the average-extroverted students, those who attended the conversation group are 5.2 times more likely to pass the English language test than those who did not

Odds ratios - interactions (2)

- The odds ratio of 1 point increase of X is
- $\exp (1.3745)=3.95$ when $Z=0$
$-\exp (1.3745+1.2022)=13.15$ when $Z=1$
- Among the students who did not attend the conversation group, those who are 1 SD more extroverted than the average are 4 times more likely to pass the test than the average-extroverted student
- Among the students who attended the group, those who are 1 SD more extroverted than the average are 13 times more likely to pass the test than the average-extroverted student
- Note that $13.15 / 3.95=3.33=\exp (1.2022)$
- Among the more extroverted students, those who attended the group are 3.3 times more likely to pass the test than those who did not

Reporting quantities of interest

- To talk in terms of odds ratios can be frustrating, next to being difficult for the reader
- This becomes more problematic the more our model gets complex
- When we include interaction effects in the model, interpreting the coefficients in terms of odds ratio becomes cumbersome
- Moreover, even without interactions, coefficients in logit models can't be interpreted as unconditional marginal effects: they depend on the position of the predictors
- Finally, the non-linearity of the logit transformation makes it tricky to present quantities that help the reader understand the magnitude of the phenomenon that we are observing
- To talk about "one point increase" may be inappropriate, as it depends on where that increase happens
- Better to present quantities of interest

Predicted probabilities

- Let's consider the same model we saw, just without interaction

	Estimate	Std. Error	z	value	$\operatorname{Pr}(>\|z\|)$	
(Intercept)	0.8411	0.1471	5.719	$1.07 e-08$	$* * *$	
X	1.6330	0.1683	9.702	$<2 e-16$	$* * *$	
Z	1.0592	0.2616	4.049	$5.14 e-05$	$* * *$	

- We want to know how the probability that $Y=1$ changes as X goes from -2 to +2
- To transform our coefficients into probabilities we need to use the inverse logit function:

$$
\pi=\frac{\exp (X \beta)}{1+\exp (X \beta)}
$$

- Which sometimes is written as:

$$
\pi=\frac{1}{1+\exp (-X \beta)}
$$

Predicted probabilities - bivariate

- Given our output, when $\mathrm{X}=-2$ we have

$$
P(Y \mid X=-2)=\frac{\exp (0.8411-2 * 1.6330)}{1+\exp (0.8411-2 * 1.6330)}=0.08
$$

- When $\mathrm{X}=0$ we have

$$
P(Y \mid X=0)=\frac{\exp (0.8411)}{1+\exp (0.8411)}=0.699
$$

- And when $\mathrm{X}=+2$ we have

$$
P(Y \mid X=2)=\frac{\exp (0.8411+2 * 1.6330)}{1+\exp (0.8411+2 * 1.6330)}=0.98
$$

- Notice the non-linearity: one increase of two points from -2 to 0 produced a change in probability of 0.62 , while an increase of the same magnitude from 0 to +2 produced a change in probability of 0.28

Predicted probabilities - bivariate (2)

Predicted probabilities - multivariate

- What if we take Z into account? For $\mathrm{X}=-2$ we have

$$
\begin{gathered}
P(Y \mid X=-2, Z=0)=\frac{\exp (0.8411-2 * 1.6330)}{1+\exp (0.8411-2 * 1.6330)}=0.08 \\
P(Y \mid X=-2, Z=1)=\frac{\exp (0.8411-2 * 1.6330+1.0592)}{1+\exp (0.8411-2 * 1.6330+1.0592)}=0.20
\end{gathered}
$$

- For $\mathrm{X}=+2$ we have

$$
\begin{gathered}
P(Y \mid X=2, Z=0)=\frac{\exp (0.8411+2 * 1.6330)}{1+\exp (0.8411+2 * 1.6330)}=0.98 \\
P(Y \mid X=2, Z=1)=\frac{\exp (0.8411+2 * 1.6330+1.0592)}{1+\exp (0.8411+2 * 1.6330+1.0592)}=0.99
\end{gathered}
$$

Predicted probabilities - multivariate (2)

Predicted probabilities - interactions

- Let's consider now the model with the interaction $\mathrm{X} * \mathrm{Z}$ that we already saw

	Estimate	Std. Error	z	value	$\operatorname{Pr}(>\|z\|)$	
(Intercept)	0.7787	0.1417	5.497	$3.86 e-08$	$* * *$	
X	1.3745	0.1813	7.582	$3.39 \mathrm{e}-14$	$* * *$	
Z	1.6502	0.3894	4.238	$2.26 \mathrm{e}-05$	$* * *$	
$\mathrm{X}: \mathrm{Z}$	1.2022	0.4831	2.488	0.0128	$*$	

Predicted probabilities - interactions (2)

- For $\mathrm{X}=-2$ we have

$$
\begin{gathered}
P(Y \mid X=-2, Z=0)=\frac{\exp (0.7787-2 * 1.3745)}{1+\exp (0.7787-2 * 1.3745)}=0.12 \\
P(Y \mid X=-2, Z=1)=\frac{\exp (0.7787-2 * 1.3745+1.6502-2 * 1.2022)}{1+\exp (0.7787-2 * 1.3745+1.6502-2 * 1.2022)}=0.06
\end{gathered}
$$

- For $\mathrm{X}=+2$ we have

$$
\begin{gathered}
P(Y \mid X=2, Z=0)=\frac{\exp (0.7787+2 * 1.3745)}{1+\exp (0.7787+2 * 1.3745)}=0.97 \\
P(Y \mid X=2, Z=1)=\frac{\exp (0.7787+2 * 1.3745+1.6502+2 * 1.2022)}{1+\exp (0.7787+2 * 1.3745+1.6502+2 * 1.2022)}=0.999
\end{gathered}
$$

Predicted probabilities - interactions (3)

Confidence Intervals

- To report our results in a compelling way, we need to report also the uncertainty of our estimates
- Recall how standard errors are found in the ML framework:
- We have the matrix of second partial derivatives, called "Hessian"
- The inverse is the variance/covariance matrix of our estimates
- Fortunately, R extracts this information for us via the vcov() function
- Because the standard errors are on the same scale of the predictors, we can use them to add confidence intervals (Cls) to our odds ratios
- For instance, the coefficient of Z in our first model was 0.8118 with standard error 0.22
- Thus, as we saw, the odds ratio of $Y=1$ between $Z=1$ and $Z=0$ is $\exp (0.8118)=\underline{2.25}$
- Moreover, its confidence interval goes from $\exp (0.8118-1.96 * 0.22)$ $=\underline{1.46}$, to $\exp (0.8118+1.96 * 0.22)=\underline{3.47}$

Confidence Intervals (2)

- One way to get Cls for our predicted probabilities is to simulate a distribution of values based on the means of our coefficients (the point estimates) and the variance/covariance matrix
- This method is often employed when conditional effects are involved, as it was invoked by Brambor et al. (2006)
- An alternative is to bootstrap
- Bootstrap means, you sample from our data (with replacement), run the model, calculate predicted probabilities, store them, do the same again and again and again
- As a result, you'll have a distribution of quantities of interest, and you can choose the interval to display
- Bootstrap is somewhat more conservative than the simulation-based approach. It is more accurate in some cases, for instance when you have outliers that might drive your results

Predicted probabilities with Cls

Predicted probabilities with Cls (2)

