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Reporting the model results
I Let’s recall the LPM
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I Where β0 = 0.51 and β1 = 0.32
I What do these numbers mean? 2 / 23



LPM vs Logit

LPM
Coefficients :

Estimate Std. Error t value Pr(>|t|)
( Intercept ) 0.51057 0.01223 41.73 <2e -16 ***
X 0.32185 0.01240 25.95 <2e -16 ***

Logit

Coefficients :
Estimate Std. Error z value Pr(>|z|)

( Intercept ) 0.07675 0.08449 0.908 0.364
X 2.25346 0.14165 15.908 <2e -16 ***

I Where:
I exp(0.07675) = 1.079772
I exp(2.25346) = 9.52062

I What do these numbers mean?
3 / 23



Odds

I The odds are a ratio of the probability that yi = 1 to the probability
that yi = 0

I When we have probability p = 0.5, then 0.5/0.5 = 1. The
odds are 1 to 1

I If we apply for a job where we have 80% chance of success,
then 0.8/0.2 = 4. The odds are 4 to 1: the chances of
success are 4 times larger than the chances of failure

I Recall:

logit(π) = log
(

π

1− π

)
= Xβ

I Odds are what we obtain when we exponentiate the coefficients of a
logistic regression

I Odds of what against what?
I What do the odds expressed by the coefficient of X mean?
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Odds ratios

I Let’s consider a variable Y measuring on a population of 500
students whether they passed an English language test (1) or not (0)

Y=0 Y=1
147 353

I Here 353/147 = 2.40 means that the odds of passing the test are
about 2.40 to 1

I If we run a logit regression with intercept only, we get
Estimate Std. Error z value Pr(>|z|)

( Intercept ) 0.87604 0.09816 8.924 <2e -16 ***

I This makes sense since log(353/147) = 0.8760355

5 / 23



Odds ratios – dummy variables
I Now let’s consider a dummy variable Z indicating whether the

students attended an English conversation group organized by the
student union (1) or not (0)

Y=0 Y=1 Total
Z=0 111 204 315
Z=1 36 149 185
Total 147 353 500

I Here, the odds of Y = 1 are:
I 204/111 = 1.837838 when Z = 0
I 149/36 = 4.138889 when Z = 1

I And the odds ratio of passing the test (Y = 1) for those who went to
the conversation group (Z = 1) with respect to those who did not
(Z = 0) is (149/36)/(204/111) = 2.25

I Attending the English conversation group makes the odds of passing
the language test 2.25 times larger than not attending it
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Odds ratios – dummy variables (2)

I If we run a logit of Y on Z we get
Estimate Std. Error z value Pr(>|z|)

( Intercept ) 0.6086 0.1179 5.16 2.47e -07 ***
Z 0.8118 0.2200 3.69 0.000224 ***

I Here the intercept
I exp(0.6086) = 1.84 are the odds of observing Y = 1

when Z = 0
I When Z = 0, the probability of success is about 84% larger

then the probability of failure
I And the slope

I exp(0.8118) = 2.25 is the ratio of the odds of Y = 1
when Z = 1 with respect to when Z = 0

I The odds of success when students attend the conversation
group are about 125% larger than when they do not
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Odds ratios – continuous variables

I Further, let’s look at the effect of students’ standardized score on an
“extrovert personality” test, X (µ = 0.04; σ = 0.95)

Estimate Std. Error z value Pr(>|z|)
( Intercept ) 1.1768 0.1278 9.206 <2e -16 ***
X 1.5834 0.1639 9.662 <2e -16 ***

I Here the intercept refers to the odds of Y = 1 when X = 0, so
exp(1.1768) = 3.24

I The exponentiated slope coefficient is the change in odds for one unit
increase of X

I exp(1.5834) = 4.87 means that every unit increase of X increases
the odds of success by a factor of 4.9

I When X = 1, exp(1.1768 + 1.5834*1) = 15.8: students who are
1 SD more extroverted than the average are 16 times more likely to
pass the test than to fail

I When X = 2, exp(1.1768 + 1.5834*2) = 76.98: students who
are 2 SD more extroverted than the average are 77 times more likely
to pass the test than to fail

I Note that 76.98/15.8 = 4.87 = exp(1.5834)
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Odds ratios – interactions

I Let’s consider a full interaction model
Estimate Std. Error z value Pr(>|z|)

( Intercept ) 0.7787 0.1417 5.497 3.86e -08 ***
X 1.3745 0.1813 7.582 3.39e -14 ***
Z 1.6502 0.3894 4.238 2.26e -05 ***
X:Z 1.2022 0.4831 2.488 0.0128 *

I Here we have two equations, one for Z = 0 and one for Z = 1
I The odds ratio of Z = 1 to Z = 0 is exp(1.6502) = 5.21
I This ratio applies only when X = 0
I Among the average-extroverted students, those who attended the

conversation group are 5.2 times more likely to pass the English
language test than those who did not
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Odds ratios – interactions (2)

I The odds ratio of 1 point increase of X is
I exp(1.3745) = 3.95 when Z = 0
I exp(1.3745 + 1.2022) = 13.15 when Z = 1

I Among the students who did not attend the conversation group,
those who are 1 SD more extroverted than the average are 4 times
more likely to pass the test than the average-extroverted student

I Among the students who attended the group, those who are 1 SD
more extroverted than the average are 13 times more likely to pass
the test than the average-extroverted student

I Note that 13.15/3.95 = 3.33 = exp(1.2022)
I Among the more extroverted students, those who attended the

group are 3.3 times more likely to pass the test than those who did
not
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Reporting quantities of interest

I To talk in terms of odds ratios can be frustrating, next to being
difficult for the reader

I This becomes more problematic the more our model gets complex
I When we include interaction effects in the model, interpreting

the coefficients in terms of odds ratio becomes cumbersome
I Moreover, even without interactions, coefficients in logit models can’t

be interpreted as unconditional marginal effects: they depend on the
position of the predictors

I Finally, the non-linearity of the logit transformation makes it tricky to
present quantities that help the reader understand the magnitude of
the phenomenon that we are observing

I To talk about “one point increase” may be inappropriate, as it
depends on where that increase happens

I Better to present quantities of interest
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Predicted probabilities

I Let’s consider the same model we saw, just without interaction
Estimate Std. Error z value Pr(>|z|)

( Intercept ) 0.8411 0.1471 5.719 1.07e -08 ***
X 1.6330 0.1683 9.702 < 2e -16 ***
Z 1.0592 0.2616 4.049 5.14e -05 ***

I We want to know how the probability that Y = 1 changes as X goes
from -2 to +2

I To transform our coefficients into probabilities we need to use the
inverse logit function:

π = exp(Xβ)
1 + exp(Xβ)

I Which sometimes is written as:

π = 1
1 + exp(−Xβ)
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Predicted probabilities – bivariate
I Given our output, when X = -2 we have

P(Y |X = −2) = exp(0.8411− 2 ∗ 1.6330)
1 + exp(0.8411− 2 ∗ 1.6330) = 0.08

I When X = 0 we have

P(Y |X = 0) = exp(0.8411)
1 + exp(0.8411) = 0.699

I And when X = +2 we have

P(Y |X = 2) = exp(0.8411 + 2 ∗ 1.6330)
1 + exp(0.8411 + 2 ∗ 1.6330) = 0.98

I Notice the non-linearity: one increase of two points from -2 to 0
produced a change in probability of 0.62, while an increase of the
same magnitude from 0 to +2 produced a change in probability of
0.28
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Predicted probabilities – bivariate (2)
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Predicted probabilities – multivariate

I What if we take Z into account? For X = -2 we have

P(Y |X = −2,Z = 0) = exp(0.8411− 2 ∗ 1.6330)
1 + exp(0.8411− 2 ∗ 1.6330) = 0.08

P(Y |X = −2,Z = 1) = exp(0.8411− 2 ∗ 1.6330 + 1.0592)
1 + exp(0.8411− 2 ∗ 1.6330 + 1.0592) = 0.20

I For X = +2 we have

P(Y |X = 2,Z = 0) = exp(0.8411 + 2 ∗ 1.6330)
1 + exp(0.8411 + 2 ∗ 1.6330) = 0.98

P(Y |X = 2,Z = 1) = exp(0.8411 + 2 ∗ 1.6330 + 1.0592)
1 + exp(0.8411 + 2 ∗ 1.6330 + 1.0592) = 0.99
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Predicted probabilities – multivariate (2)
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Predicted probabilities – interactions

I Let’s consider now the model with the interaction X*Z that we
already saw

Estimate Std. Error z value Pr(>|z|)
( Intercept ) 0.7787 0.1417 5.497 3.86e -08 ***
X 1.3745 0.1813 7.582 3.39e -14 ***
Z 1.6502 0.3894 4.238 2.26e -05 ***
X:Z 1.2022 0.4831 2.488 0.0128 *
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Predicted probabilities – interactions (2)

I For X = -2 we have

P(Y |X = −2, Z = 0) = exp(0.7787− 2 ∗ 1.3745)
1 + exp(0.7787− 2 ∗ 1.3745) = 0.12

P(Y |X = −2, Z = 1) = exp(0.7787− 2 ∗ 1.3745 + 1.6502− 2 ∗ 1.2022)
1 + exp(0.7787− 2 ∗ 1.3745 + 1.6502− 2 ∗ 1.2022) = 0.06

I For X = +2 we have

P(Y |X = 2, Z = 0) = exp(0.7787 + 2 ∗ 1.3745)
1 + exp(0.7787 + 2 ∗ 1.3745) = 0.97

P(Y |X = 2, Z = 1) = exp(0.7787 + 2 ∗ 1.3745 + 1.6502 + 2 ∗ 1.2022)
1 + exp(0.7787 + 2 ∗ 1.3745 + 1.6502 + 2 ∗ 1.2022) = 0.999
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Predicted probabilities – interactions (3)
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Confidence Intervals

I To report our results in a compelling way, we need to report also the
uncertainty of our estimates

I Recall how standard errors are found in the ML framework:
I We have the matrix of second partial derivatives, called “Hessian”
I The inverse is the variance/covariance matrix of our estimates
I Fortunately, R extracts this information for us via the vcov() function

I Because the standard errors are on the same scale of the predictors,
we can use them to add confidence intervals (CIs) to our odds ratios

I For instance, the coefficient of Z in our first model was 0.8118 with
standard error 0.22

I Thus, as we saw, the odds ratio of Y = 1 between Z = 1 and Z = 0
is exp(0.8118) = 2.25

I Moreover, its confidence interval goes from exp(0.8118-1.96*0.22)
= 1.46, to exp(0.8118+1.96*0.22) = 3.47
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Confidence Intervals (2)

I One way to get CIs for our predicted probabilities is to simulate a
distribution of values based on the means of our coefficients (the
point estimates) and the variance/covariance matrix

I This method is often employed when conditional effects are
involved, as it was invoked by Brambor et al. (2006)

I An alternative is to bootstrap
I Bootstrap means, you sample from our data (with replacement),

run the model, calculate predicted probabilities, store them, do
the same again and again and again

I As a result, you’ll have a distribution of quantities of interest,
and you can choose the interval to display

I Bootstrap is somewhat more conservative than the
simulation-based approach. It is more accurate in some cases,
for instance when you have outliers that might drive your results
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Predicted probabilities with CIs
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Predicted probabilities with CIs (2)
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