Intro to GLM - Day 3: Quantities of interest

Federico Vegetti Central European University

ECPR Summer School in Methods and Techniques

Reporting the model results

Let's recall the LPM

- Where $\beta_0 = 0.51$ and $\beta_1 = 0.32$
- What do these numbers mean?

LPM vs Logit

LPM

Coefficients:							
	Estimate	Std.	Error	t	value	Pr(> t)	
(Intercept)	0.51057	0	.01223		41.73	<2e-16	***
Х	0.32185	0	.01240		25.95	<2e-16	***

Logit

Coefficients:							
	Estimate	Std.	Error	z	value	Pr(> z)	
(Intercept)	0.07675	Ο.	.08449		0.908	0.364	
Х	2.25346	Ο.	.14165	:	15.908	<2e-16	***

- ► Where:
 - \blacktriangleright exp(0.07675) = 1.079772
 - ▶ exp(2.25346) = 9.52062
- What do these numbers mean?

Odds

- ► The odds are a ratio of the probability that y_i = 1 to the probability that y_i = 0
 - When we have probability p = 0.5, then 0.5/0.5 = 1. The odds are 1 to 1
 - If we apply for a job where we have 80% chance of success, then 0.8/0.2 = 4. The odds are 4 to 1: the chances of success are 4 times larger than the chances of failure

Recall:

$$\textit{logit}(\pi) = \textit{log}\left(rac{\pi}{1-\pi}
ight) = Xeta$$

 Odds are what we obtain when we exponentiate the coefficients of a logistic regression

Odds

- ► The odds are a ratio of the probability that y_i = 1 to the probability that y_i = 0
 - When we have probability p = 0.5, then 0.5/0.5 = 1. The odds are 1 to 1
 - If we apply for a job where we have 80% chance of success, then 0.8/0.2 = 4. The odds are 4 to 1: the chances of success are 4 times larger than the chances of failure

Recall:

$$\textit{logit}(\pi) = \textit{log}\left(rac{\pi}{1-\pi}
ight) = Xeta$$

- Odds are what we obtain when we exponentiate the coefficients of a logistic regression
- Odds of what against what?
- What do the odds expressed by the coefficient of X mean?

Let's consider a variable Y measuring on a population of 500 students whether they passed an English language test (1) or not (0)

Y=0	Y=1
147	353

- Here 353/147 = 2.40 means that the odds of passing the test are about 2.40 to 1
- If we run a logit regression with intercept only, we get

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.87604 0.09816 8.924 <2e-16 ***
```

This makes sense since log(353/147) = 0.8760355

Odds ratios – dummy variables

Now let's consider a dummy variable Z indicating whether the students attended an English conversation group organized by the student union (1) or not (0)

	Y=0	Y=1	Total
Z=0	111	204	315
Z=1	36	149	185
Total	147	353	500

- Here, the odds of Y = 1 are:
 - ▶ 204/111 = 1.837838 when Z = 0
 - ▶ 149/36 = 4.138889 when *Z* = 1
- ► And the *odds ratio* of passing the test (Y = 1) for those who went to the conversation group (Z = 1) with respect to those who did not (Z = 0) is (149/36)/(204/111) = 2.25
- Attending the English conversation group makes the odds of passing the language test 2.25 times larger than not attending it

Odds ratios – dummy variables (2)

If we run a logit of Y on Z we get

Estimate Std. Error z value Pr(>|z|)(Intercept)0.60860.11795.162.47e-07***Z0.81180.22003.690.000224***

- Here the intercept
 - exp(0.6086) = 1.84 are the odds of observing Y = 1 when Z = 0
 - ▶ When Z = 0, the probability of success is about 84% larger then the probability of failure
- And the slope
 - exp(0.8118) = 2.25 is the ratio of the odds of Y = 1 when Z = 1 with respect to when Z = 0
 - The odds of success when students attend the conversation group are about 125% larger than when they do not

Odds ratios – continuous variables

Further, let's look at the effect of students' standardized score on an "extrovert personality" test, X ($\mu = 0.04$; $\sigma = 0.95$)

	Estimate	Std.	Error	z	value	Pr(> z)	
(Intercept)	1.1768	(0.1278		9.206	<2e-16	***
Х	1.5834	(0.1639		9.662	<2e-16	***

- Here the intercept refers to the odds of Y = 1 when X = 0, so exp(1.1768) = 3.24
- The exponentiated slope coefficient is the change in odds for one unit increase of X
 - exp(1.5834) = 4.87 means that every unit increase of X increases the odds of success by a factor of 4.9
 - When X = 1, exp(1.1768 + 1.5834*1) = 15.8: students who are 1 SD more extroverted than the average are 16 times more likely to pass the test than to fail
 - When X = 2, exp(1.1768 + 1.5834*2) = 76.98: students who are 2 SD more extroverted than the average are 77 times more likely to pass the test than to fail
 - Note that 76.98/15.8 = 4.87 = exp(1.5834)

Let's consider a full interaction model

	Estimate	Std. Error	z	value	Pr(> z)	
(Intercept)	0.7787	0.1417		5.497	3.86e-08	***
Х	1.3745	0.1813		7.582	3.39e-14	***
Z	1.6502	0.3894		4.238	2.26e-05	***
X:Z	1.2022	0.4831		2.488	0.0128	*

- Here we have two equations, one for Z = 0 and one for Z = 1
- The odds ratio of Z = 1 to Z = 0 is exp(1.6502) = 5.21
- This ratio applies only when X = 0
- ► Among the average-extroverted students, those who attended the conversation group are 5.2 times more likely to pass the English language test than those who did not

Odds ratios – interactions (2)

- The odds ratio of 1 point increase of X is
 - $\exp(1.3745) = 3.95$ when Z = 0
 - $\exp(1.3745 + 1.2022) = 13.15$ when Z = 1
- Among the students who did not attend the conversation group, those who are 1 SD more extroverted than the average are 4 times more likely to pass the test than the average-extroverted student
- Among the students who attended the group, those who are 1 SD more extroverted than the average are 13 times more likely to pass the test than the average-extroverted student
- Note that 13.15/3.95 = 3.33 = exp(1.2022)
- Among the more extroverted students, those who attended the group are 3.3 times more likely to pass the test than those who did not

Reporting quantities of interest

- To talk in terms of odds ratios can be frustrating, next to being difficult for the reader
- ► This becomes more problematic the more our model gets complex
 - When we include interaction effects in the model, interpreting the coefficients in terms of odds ratio becomes cumbersome
- Moreover, even without interactions, coefficients in logit models can't be interpreted as unconditional marginal effects: they depend on the position of the predictors
- Finally, the non-linearity of the logit transformation makes it tricky to present quantities that help the reader understand the magnitude of the phenomenon that we are observing
 - To talk about "one point increase" may be inappropriate, as it depends on <u>where</u> that increase happens
- Better to present quantities of interest

Predicted probabilities

Let's consider the same model we saw, just without interaction

	Estimate	Std. Error	z	value	Pr(> z)	
(Intercept)	0.8411	0.1471		5.719	1.07e-08	***
X	1.6330	0.1683		9.702	< 2e-16	***
Z	1.0592	0.2616		4.049	5.14e-05	***

- ▶ We want to know how the probability that Y = 1 changes as X goes from -2 to +2
- To transform our coefficients into probabilities we need to use the inverse logit function:

$$\pi = \frac{\exp(X\beta)}{1 + \exp(X\beta)}$$

Which sometimes is written as:

$$\pi = rac{1}{1 + exp(-Xeta)}$$

Predicted probabilities - bivariate

▶ Given our output, when X = -2 we have

$$P(Y|X = -2) = \frac{exp(0.8411 - 2 * 1.6330)}{1 + exp(0.8411 - 2 * 1.6330)} = 0.08$$

When X = 0 we have

$$P(Y|X=0) = \frac{exp(0.8411)}{1 + exp(0.8411)} = 0.699$$

And when X = +2 we have

$$P(Y|X=2) = \frac{exp(0.8411 + 2 * 1.6330)}{1 + exp(0.8411 + 2 * 1.6330)} = 0.98$$

Notice the non-linearity: one increase of two points from -2 to 0 produced a change in probability of 0.62, while an increase of the same magnitude from 0 to +2 produced a change in probability of 0.28

Predicted probabilities – bivariate (2)

Predicted probabilities – multivariate

▶ What if we take Z into account? For X = -2 we have

$$P(Y|X = -2, Z = 0) = \frac{exp(0.8411 - 2 * 1.6330)}{1 + exp(0.8411 - 2 * 1.6330)} = 0.08$$

$$P(Y|X = -2, Z = 1) = \frac{exp(0.8411 - 2 * 1.6330 + 1.0592)}{1 + exp(0.8411 - 2 * 1.6330 + 1.0592)} = 0.20$$

► For X = +2 we have

$$P(Y|X=2, Z=0) = \frac{exp(0.8411+2*1.6330)}{1+exp(0.8411+2*1.6330)} = 0.98$$

$$P(Y|X=2, Z=1) = \frac{exp(0.8411+2*1.6330+1.0592)}{1+exp(0.8411+2*1.6330+1.0592)} = 0.99$$

Predicted probabilities – multivariate (2)

Let's consider now the model with the interaction X*Z that we already saw

	Estimate	Std. Error	z	value	Pr(> z)	
(Intercept)	0.7787	0.1417		5.497	3.86e-08	***
X	1.3745	0.1813		7.582	3.39e-14	***
Z	1.6502	0.3894		4.238	2.26e-05	***
X:Z	1.2022	0.4831		2.488	0.0128	*

Predicted probabilities – interactions (2)

$$P(Y|X = -2, Z = 0) = \frac{exp(0.7787 - 2 * 1.3745)}{1 + exp(0.7787 - 2 * 1.3745)} = 0.12$$

$$P(Y|X = -2, Z = 1) = \frac{exp(0.7787 - 2 * 1.3745 + 1.6502 - 2 * 1.2022)}{1 + exp(0.7787 - 2 * 1.3745 + 1.6502 - 2 * 1.2022)} = 0.06$$

► For X = +2 we have

$$P(Y|X=2, Z=0) = \frac{exp(0.7787 + 2 * 1.3745)}{1 + exp(0.7787 + 2 * 1.3745)} = 0.97$$

$$P(Y|X=2, Z=1) = \frac{exp(0.7787 + 2 * 1.3745 + 1.6502 + 2 * 1.2022)}{1 + exp(0.7787 + 2 * 1.3745 + 1.6502 + 2 * 1.2022)} = 0.999$$

Predicted probabilities – interactions (3)

Confidence Intervals

- To report our results in a compelling way, we need to report also the uncertainty of our estimates
- Recall how standard errors are found in the ML framework:
 - We have the matrix of second partial derivatives, called "Hessian"
 - The inverse is the variance/covariance matrix of our estimates
 - Fortunately, R extracts this information for us via the vcov() function
- Because the standard errors are on the same scale of the predictors, we can use them to add confidence intervals (CIs) to our odds ratios
 - For instance, the coefficient of Z in our first model was 0.8118 with standard error 0.22
 - Thus, as we saw, the odds ratio of Y = 1 between Z = 1 and Z = 0 is exp(0.8118) = 2.25
 - Moreover, its confidence interval goes from exp(0.8118-1.96*0.22)
 - = <u>1.46</u>, to exp(0.8118+1.96*0.22) = <u>3.47</u>

Confidence Intervals (2)

- One way to get Cls for our predicted probabilities is to simulate a distribution of values based on the means of our coefficients (the point estimates) and the variance/covariance matrix
 - This method is often employed when conditional effects are involved, as it was invoked by Brambor et al. (2006)
- An alternative is to bootstrap
 - Bootstrap means, you sample from our data (with replacement), run the model, calculate predicted probabilities, store them, do the same again and again and again
 - As a result, you'll have a distribution of quantities of interest, and you can choose the interval to display
 - Bootstrap is somewhat more conservative than the simulation-based approach. It is more accurate in some cases, for instance when you have outliers that might drive your results

Predicted probabilities with CIs

Predicted probabilities with CIs (2)

