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Categorical events with more than two outcomes

In social science, many phenomena do not consist of simple yes/no
alternatives

1. Categorical variables
I Example: multiple choices
I A voter in a multiparty system can choose between many

political parties
I A consumer in a supermarket can choose between several

brands of toothpaste

2. Ordinal variables
I Survey questions often ask “how much do you agree” with a

certain statement
I You may have 2 options: “agree” or “disagree”
I You may have more options: e.g. “completely agree”,
“somewhat agree”, “somewhat disagree”, “completely disagree”
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Categorical dependent variables

I Imagine a country where voters can choose between 3 parties:
“A”, “B”, “C”

I We want to study whether a set of individual attributes affect
vote choice

I In theory, we could run several binary logistic regressions
predicting the probability to choose between any two parties

I If we have three categories, how many binary regressions do we
need to run?
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Multiple binary models?

I We need to run only 2 regressions:

log
[P(A|X )
P(B|X )

]
= βA|BX ; log

[P(B|X )
P(C |X )

]
= βB|CX

I Estimating also log
[

P(A|X)
P(C |X)

]
would be redundant:

log
[P(A|X )
P(B|X )

]
+ log

[P(B|X )
P(C |X )

]
= log

[P(A|X )
P(C |X )

]

I And:

βA|BX + βB|CX = βA|CX
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Multiple binary models? (2)

I However, if we estimated all binary models independently, we
would find out that βA|BX + βB|CX 6= βA|CX

I Why? Because the samples would be different
I The model for log

[
P(A|X)
P(B|X)

]
would would include only people

who voted for “A” or “B”
I The model for log

[
P(B|X)
P(C |X)

]
would would include only people

who voted for “B” or “C”
I We want a model that uses the full sample and estimates the

two groups of coefficients simultaneously

5 / 27



Multinomial probability model

I To make sure that the probabilities sum up to 1, we need to
take all alternatives into account in the same probability model

I As a result, the probability that a voter i picks a party m
among a set of J parties is:

P(Yi = m|Xi ) = exp(Xiβm)∑J
j=1 exp(Xiβj)

I Note: to make sure the model is identified, we need to set
β = 0 for a given category, called the “baseline category”

I Conceptually, this is the same as running only 2 binary logit
models when there are 3 categories
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Multinomial probability model (2)

I We can still obtain predicted probabilities for each category
I Assuming that the baseline category is 1, the probability of

Y = 1 is:

P(Yi = 1|Xi ) = 1
1 +

∑J
j=2 exp(Xiβj)

I And the probability of Y = m, where m refers to any other
category, is:

P(Yi = m|Xi ) = exp(Xiβm)
1 +

∑J
j=2 exp(Xiβj)

for m > 1

I The choice of the baseline category is arbitrary
I However, it makes sense to pick a theoretically meaningful one
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Estimation of multinomial logit models

I The likelihood function for the multinomial logit model is:

L(β2, . . . , βj |y ,X ) =
J∏

m=1

∏
yj =m

exp(Xiβm)∑J
j=1 exp(Xiβj)

I Where
∏

yj =m is the product over the cases where yi = m
I The estimation will work as usual: the software will take the

log-likelihood function and it will look for the ML estimates of
β iteratively

I For every independent variable, the model will produce J − 1
parameter estimates
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Multinomial logit: interpretation

I Like in binary logit, our coefficients are log-odds to choose
category m instead of the baseline category

exp(Xiβm) = πm
π1

I How do we compare the coefficients between categories that
are not the baseline?

I First, again, pick a baseline category that makes sense
I Second, comparing coefficients between estimated categories is

straightforward:
πm
πj

= exp[Xi (βm − βj)]

I I.e. the exponentiated difference between the coefficients of
two estimated categories is equivalent to the odds to end up in
one category instead of the other (given a set of individual
characteristics)
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Multinomial logit: predicted probabilities

I Predicted probabilities to choose any of the estimated
categories are:

πim = exp(Xiβm)
1 +

∑J
j=2 exp(Xiβj)

I And for the baseline category they are:

πi1 = 1
1 +

∑J
j=2 exp(Xiβj)
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Multinomial models as choice models

I A way to interpret multinomial models is, more directly, as
choice models

I This approach is sometimes called “Random Utility Model” and
it is quite popular in economics

I This interpretatons is based on two assumptions:
I Utility varies across individuals. Different individuals have

different utilities for different options
I Individual decision makers are utility maximizers: they will

choose the alternative that yields the highest utility

I Utility: the degree of satisfaction that a person expects from
choosing a certain option

I The utility is made of a systematic component µ and a
stochastic component e
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Utility and multiple choice

I For an individual i, the (random) utility for the option m is:

Uim = µim + eim = Xβim + eim

I When there are J options, m is chosen over an alternative
j 6= m if Uim > Uij

P(Yi = m) = P(Uim > Uij)

P(Yi = m) = P(µim − µij > eij − eim)

I The likelihood function and estimation are identical to the
probability model that we just saw
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Assumptions

1. The stochastic component follows a Gumbel distribution (AKA
“Type I extreme-value distribution”)

F (e) = exp[−e − exp(−e)]

2. Among different alternatives, the errors are identically
distributed

3. Among different alternatives, the errors are independent
I This assumptions is called “independence of the irrelevant

alternatives”, and it is quite controversial
I It states that the ratio of choice probabilities for two different

alternatives is independent from all the other alternatives
I In other words, if you are choosing between party “A” and party
“B”, the presence of party “C” is irrelevant
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Conditional logit

I In multinomial logit models, we explain choice beween different
alternatives using attributes of the decision-maker

I E.g. education, gender, employment status
I However, it is possible to explain choice using attributes of the

alternatives themselves
I E.g. are voters more likely to vote for bigger parties?
I The latter model is called “conditional logit”
I It is not so common in political science, as it requires observing

variables that vary between the choice options
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Multinomial vs Conditional logit

Multinomial logit

I We keep the values of the predictors constant across alternatives
I We let the parameters vary across alternatives

I E.g. the gender of a voter is always the same, no matter if
s/he’s evaluating party “A” or party “B”

I The effect of gender will be different between party “A” and “B”

Conditional logit

I We let the values of the predictors change across alternatives
I We keep the parameters constant across alternatives

I The size of party “A” and party “B” is the same for all
individuals

I The effect of size is the same for all parties
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Ordinal dependent variables

I Suppose the categories have a natural order
I For instance, look at this item in the World Values Study:
I “Using violence to pursue political goals is never justified”

I Strongly Disagree
I Disagree
I Agree
I Strongly Agree

I Here we can rank the values, but we don’t know the distance
between them

I We could use a multinomial model, but this way we would
ignore the order, losing information
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Modeling ordinal outcomes

I Two ways of modeling ordered categorical variables:
I A latent variable model
I A non-linear probability model

I These two methods reflect what we have seen with binary
response models

I In fact, you can think of binary models as special cases of
ordered models with only 2 categories

I As with binary models, the estimation will be the same
I However, for ordered models, the latent variable specification is

somewhat more common
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A latent variable model

I Imagine we have an unobservable latent variable y∗ that
expresses our construct of interest (e.g. endorsement of
political violence)

I However, all we can observe is the ordinal variable y with M
categories

I y∗ is mapped into y through a set of cut points τm

yi =


1 if −∞ < yi∗ < τ1
2 if τ1 < yi∗ < τ2
3 if τ2 < yi∗ < τ3
4 if τ3 < yi∗ < +∞
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Cut points

y*

τ1 τ2 τ3

y = 1 y = 2 y = 3 y = 4

19 / 27



A latent variable model (2)

I Like with the binary model, y∗ is a function of both a
systematic and a stochastic component

yi∗ = Xiβ + ei

I Then, the model is essentially a linear regression of y∗
I To be able to estimate the model we need to:

I Fix the variance of e to an assumed value
I Either 1 (then e is normally distributed)
I Or π2/3 (then e il logistically distributed)

I Exclude the constant term from the estimation of the
parameters

I Instead, estimated values of τ1, τ2, . . . , τM−1 serve as
intercepts

I Where M is the number of categories
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A non-linear probability model

I Ordinal models can be also seen as models of the cumulative
probability that an outcome y is less than or equal to m

I So, instead of modeling the probability that a certain event
happens (like in binary models), here we model the probability
of an event and of all events that are ordered before it:

P(yi ≤ m|Xi ) =
m∑

j=1
P(yi = j |Xi )

I In terms of odds, it is the odds that y ≤ m vs y > m:

Ωim(Xi ) = P(yi ≤ m|Xi )
1− P(yi ≤ m|Xi )

= P(yi ≤ m|Xi )
P(yi > m|Xi )
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Probability model

I The cumulative probability to observe an outcome of y ≤ m is:

P(yi ≤ m|Xi ) = F (τm − Xiβ)

I And the probability to observe an outcome of y = m Is:

P(yi = m|Xi ) = F (τm − Xiβ)− F (τm−1 − Xiβ)

I Where F() is either the standard normal or logistic CDF
I Again, the choice of the link function determines whether we

estimate an ordered logit or an ordered probit model
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Estimation of ordered models

I The likelihood function for ordered models is:

L(β, τ |y ,X ) =
J∏

j=1

∏
yi =m

[F (τm − Xiβ)− F (τm−1 − Xiβ)]

I Where
∏

yi =m indicates to multiply over the cases where y = m
I As usual, the software will plug in the link function, take the

log-likelihood function and look for the ML estimates of β and
τ
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Proportional odds assumption

I In the probability function that we have seen, β is the same
regardless which categories we are considering, while τ is different

I This is equivalent to estimate a number of parallel regression lines,
where only the intercept changes

I For instance, if y has 4 categories:

P(yi ≤ 1|Xi ) = F (τ1 − Xiβ)

P(yi ≤ 2|Xi ) = F (τ2 − Xiβ)

P(yi ≤ 3|Xi ) = F (τ3 − Xiβ)
I In logit models this is called the “proportional odds assumption”
I It can be tested comparing the β obtained by an ordered regression

with a set of βs obtained by a set of binary regressions for each
P(yi ≤ m|Xi )
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Ordered logit: interpretation

I Unlike the multinomial logistic model, we have only one set of
βs here

I This is due to the “proportional odds” assumption, which
implies that our βs are the same for each cut point τm

I As we are accustomed to think, the coefficients are log-odds to
choose category m instead of a lower category

exp(Xiβm) = πm
πm−1

I Also the values of τ are on the same scale: they indicate the
log-odds to be in a category below the cut point when all
predictors are equal to zero
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Ordered logit: interpretation (2)

I In ordered models, we can predict two types of probabilities:
I The cumulative probability, i.e. the probability that y will be in

the category m or in a lower ranked category
I The probability that y is in a specific category

I If we use the standard logistic CDF as link function, the
formula to get cumulative predicted probabilities is:

P(yi ≤ m|Xi ) = exp(τm − Xiβ)
1 + exp(τm − Xiβ)

26 / 27



Ordered logit: interpretation (3)

I To get predicted probabilities for specific categories, we must
still take the cumulative probability and subtract the predicted
probability for the lower ranked category:

P(yi = m) = exp(τm − Xiβ)
1 + exp(τm − Xiβ) −

exp(τm−1 − Xiβ)
1 + exp(τm−1 − Xiβ)

I Note that the larger the difference between τm and τm−1, the
easier it will be to answer yi = m.

I This is the case in some survey items where many people
choose the middle category
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