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Counts as indicators

I In political science, some phenomena are observed by counting
events

I The number of parliamentary questions asked by an MP in a
legislature

I The number of wars in which a country has been involved in a
certain period of time

I The number of coups in a certain region

I These counts are often proxies of broader, usually latent
phenomena that we want to analyze

I For instance, we can have an idea of how “pacific” a country is
by counting by the number of conflict events in which it
participates
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Count data

I What are the characteristics of count data?
I Counts can not be smaller than zero
I Counts often present many zeros
I Distribution of counts are usually right-skewed

I For these reasons (mostly the first two), OLS methods are not
appropriate

I As with other cases we encountered these days, we need to
transform the distribution of the error and the functional form
to depart from the usual normality and linearity assumptions
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Review of GLM

The three steps of GLM

1. Specify the joint distribution of Y |X . Which type of random
process has generated our data?

2. Specify the function to transform the expectation of Y into the
linear predictor

3. Specify the equation of the linear predictor. How does it relate
to our Xs?
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Poisson distribution

I A distribution that is commonly assumed for counts is the
Poisson distribution

P(Yi |λ) = exp(−λ)λyi

yi !
for λ > 0

I Where:
λ = E (y) = Var(y)

(yes, λ is both the conditional mean of y and its variance)
I The probability function of the population is the product over

the individual observations:

P(yi |λ) =
N∏

i=1

exp(−λ)λyi

yi !
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How λ affects the distribution
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Link function

I Because λ is a (mean) count, it can take only positive values
I We need a function to drop this constraint
I The most straightforward way is to take the log:

Xβ = log(λ)

I So the response function is:

λ = E (Y ) = exp(Xβ)

I The likelihood function of Poisson models consists in plugging
exp(Xβ) into the probability function

I The software will do the usual work maximizing the
log-likelihood function

7 / 21



Quantities of interest

I As we saw, the transformation performed by the link function is
a simple log transformation

I This means that our coefficients are logs of the expected
(increment in) counts, given 1 point increase of X

I Therefore, the calculation of a meaningful quantity is
straightforward: to obtain λ, we only need to exponentiate the
predicted values on the linear predictor

I A quantity of interest to present after Poisson models is a draw
from a Poisson distribution given the value of λ conditional on
interesting values of X

8 / 21



Incident rate ratios

I While we can obtain λ for desired values of X easily, the coefficients
are not so easily interpreted

I Let’s suppose we have a variable X1 which has a negative coefficient,
like -1

I If we exponentiate -1, we get a positive value: exp(-1) = 0.37
I What does that mean?
I While the raw coefficients can be interpreted as changes in log

counts with a unit increase of X, their exponent can be interpreted as
“incident rate ratios”

I Incident rate refers here to the number of events occurring
within a certain interval

I The ratio works as with odds ratios
I In our case, an IRR of 0.37 means that for every unit increase

in X, the incidence rate of Y becomes 0.37 times as big as it
was before – AKA it is reduced by 63%
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Assumptions of Poisson models

Several assumptions, the last two more important

I Every period starts with zero events
I More than one event can not occur at the same time
I The probability of observing an event during a certain interval

is the same across intervals
I The probability of observing an event during a certain interval

does not depend on whether we observed an event in any other
previous interval
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Overdispersion

I Turns out that the most problematic assumption of Poisson
models is that λ = E (yi ) = Var(yi )

I In many practical applications, the variance of our data is much
larger than the mean

I If that is the case, the Poisson distribution is not an
appropriate description of the process that generated our data

I What consequences?
I If we underestimate the dispersion of the data, our model will

produce standard errors that are smaller than they should be
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The Negative Binomial model

I A solution for overdispersion is to use “negative binomial”
regression

I The logic is simple:
I We fit a Poisson model, but we treat λ as an unobservable

random variable that follows a Gamma distribution with mean λ
and scale parameter θ

I What is a “scale parameter”?
I A scale parameter is the parameter that governs the dispersion

of a random variable
I E.g. in a normal distribution the scale parameter is the standard

deviation

I So compared to the Poisson model, in the Negative Binomial
model we estimate one more parameter
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Negative Binomial function

I The observed count follows now a negative binomial
distribution:

P(yi |λ, θ) = Γ(yi + θ)
y !Γ(θ) ×

λyi
i θ

θ

(λi + θ)λi +θ

I While the link function is the same as in the Poisson model:

E (Y ) = λ = exp(Xβ)

I But now the variance of Y is different:

Var(Y ) = λ+ λ2

θ
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On the dispersion parameter

I By modeling the variance in this way, we state that the
conditional variance of Y increases more rapidly than its
expected value

I However, given the nature of the count process, there is still a
connection between the two

I When the value of θ is very high, then λ2/θ tends to 0
I When this is the case, we go back to the situation where

Var(Y ) = λ, and the negative binomial model approximates
the Poisson model

I Since θ is estimated, we can see to what extent we gain in
terms of “correctness” when we use a negative binomial instead
of a Poisson model

14 / 21



How λ and θ affect the distribution

0

200

400

600
0 1 2 3 4 5 6 7 8 9

λ = 1; θ = 1

0

200

400

600

0 1 2 3 4 5 6 7

λ = 1; θ = 3

0

200

400

600

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16

λ = 2; θ = 1

0

200

400

600

0 1 2 3 4 5 6 7 8 9 10 12

λ = 2; θ = 3

0

200

400

600

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 23

λ = 3; θ = 1

0

200

400

600

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 17 20

λ = 3; θ = 3

15 / 21



Interpretation

I The link function in negative binomial models is still the log of
the linear predictor

I Therefore, coefficients are interpreted in the same way as in
Poisson models

I In fact, negative binomial models produce coefficients that are
very similar to the ones produced by Poisson models

I What changes are the standard errors
I The value of the dispersion parameters θ estimated by the

model informs us about the overdispersion of the data
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Too many zeros?

I Sometimes a count variable has a large amount of zeros
I This is of course a case of overdispersion
I However, when zeros are really a lot compared to the other

values, a negative binomial model might fail to fit the data
properly

I If we think of what process generated such data, we may take a
different perspective

I Perhaps, the process generating the zeros is not the same as
the process generating the count
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A two-step data generating process

I Suppose we want to study whether different working conditions
lead to different patterns of alcohol consumption or abuse

I We take a sample of people and we count how many days they
have been drinking alcoholic beverages within a month time

I Our sample will inevitable include people who do not drink
alcohol at all, and this will result in a lot of cases with count 0

I Those “zeros” will be of 2 types:
I Structural: individuals that are not at risk for the surveyed

behavior
I Random: zeros that happen due to sample variability

(e.g. being on a diet)

I In other words, we have two groups in the sample
I They may differ systematically in terms of individual

characteristics
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Zero-inflated models

I The goal of zero-inflated models is to model two processes
simultaneously:

I The probability to be in the “dry” group
I The count of drinking days within a month

I Zero-inflated regression models are a mixture of two different
models:

I A binary model predicting the probability to be in the “zero”
group (usually a logit or probit)

I A count model for those out of the “zero” group (usually a
Poisson or negative binomial)

I The two models can include different predictors
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Example: zero-inflated Poisson model
I For the zero-inflated Poisson model, the probability distribution of

the outcome is made by the two following functions:

P(yi = 0|Xi ,Zi ) = π + (1− π)exp(−λ)

P(yi |Xi ,Zi ) = (1− π)exp(−λ)λyi

yi !
for yi > 0

I Where :
I π = F (βX ) and λ = exp(γZ )
I F can be either the logistic or normal CDF
I Predictors X can the same as predictors Z or not

I Parameters are interpreted in the same way as in the respective
binary and count models

I In the zero-inflated negative binomial model, the second equation is
the one changing
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Considerations

I Not all cases of overdispersion justify using a zero-inflated
model

I The zero-inflated model should be theoretically motivated
I Is the process that we want to explain really a mixture?
I Is the step between 0 and 0< so different from e.g. 1 and 2?

I Sometimes a “simple” negative binomial model can take care
of overdispersion, without arguing for zero-inflation
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