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Sources of error in surveys

Figure 1: From Groves et al. (2009) 2 / 32



Representation error

I The difference between the values that we observe in the
sample and the true values in the population

I It has many sources
I Coverage, Sampling, Non-response

I Sampling is arguably the most relevant
I However, a similar logic applies to all of them
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Two types of error

I Bias: when the deviation from the true value systematically
goes in a specific direction

I E.g. We want to know whether people liked the new Star Wars
movie

I We interview people leaving the Opera house after a Wagner’s
play

I Our sample will probably show lower appreciation of the movie
than the average moviegoer

I Variability: when the deviation from the true value is a
random incidence

I We sample 100 people from the phone list of Berlin, and ask
them their attitude towards EU integration

I The next day we draw other 100 people from the same list, and
ask the same question

I Most likely figures won’t be identical
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Sampling and variability

Figure 2: From Groves et al. (2009) 5 / 32



Standard error

I Variability between samples is reflected in the variability within
the sample

I In fact, the standard error of an estimated parameter is
interpreted as the standard deviation of such estimate across
different independent samples

I It is calculated from the variance of the parameter in the
sample

I It corrects by the number of observations
I The more observations we have, the more information we have,

and the more precise is our estimate

6 / 32



Two goals

1. Reduce the bias of the parameter estimates
2. Increase the precision of the parameter estimates

I We can do a lot to reach these goals when planning the data
collection

I As a less optimal solution, we can also adjust the data after the
collection, in order to make them more resemblant of the
population
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On inference, again

I We saw two inferences that we make when we work with survey
data:
1. From answers to questions to individual characteristics
2. From samples to populations

I In statistics, there is a distinction between model-based and
design-based inference

I To a certain extent, these two types mirror the two inferences
we make with survey data
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Model-based inference

I Inferences that require us to make assumptions regarding the
process that generated the data

I Assumptions are theories
I We assume/theorize that a dichotomic variable (e.g. voting/not

voting) has been generated by a Bernoulli distribution
I We assume/theorize that an outcome is a function of some

predictors

I In fact we do not know what model generated the data, but we
offer an approximation of reality with our theory

I As long as our assumptions are correct, our results can be
generalized to other situations where the same process is at
work
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Model-based inference (2)

I Maximum Likelihood estimation is a classic example of
model-based inference

I Our sample is assumed to be a realization of an infinite
population that follows a given theoretical distribution

I Observations in the sample are linked to observations outside
the sample by the assumption that they all come from the
same distribution

I The parameters that we estimate from the sample are then our
best guess about the values of the true parameters in the
population given the data

I The sample does not need to be random, as long as we control
by possible factors that make it different from the population
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Model-based inference and measurement

I When we model a survey outcome (e.g. the response to a logic
quiz) we assume that it has been produced by a random
process that we theorize (e.g. intelligence)

I In this framework, both interpreting the output of a regression
and the parametes of the distribution of a survey variable imply
making a model-based inference

I The idea that measurement can be conceptualized as a
statistical model where an observed outcome is a function of a
hypothesized (latent) process is behind most psychometric
methods
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Design-based inference

I Example: a randomized experiment
I We want to see if a drug cures depression
I We take a pool of subjects with depression
I We assign them randomly to either one of two groups
I To the subjects in one group we give the actual drug, to the

others we give a placebo
I We keep them all in a clinic where they have the exact same

treatment in all other respects
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Design-based inference (2)

I In a randomized experiment:
1. We know which subjects have been given the treatment
2. We know that the only thing that differs between groups is the

treatment itself

I What allows us to make a valid inference in experiments is
random assignment

I To make sure that the only systematic difference between the
two groups is the occurrence of the treatment, we must assign
units randomly to one group or the other

I In other words, we know that each unit has equal probability to
end up in either one of the two groups

I This knowledge is the central point of design-based inference

13 / 32



Design-based inference in surveys

I Design-based inference allows us to draw conclusions about a
variable in the the target population by looking at a sample
and without assuming an underlying generative model

I In other words, we can draw descriptive evidence directly from
the sample to the population

I To be able to do so, we need to know the design that has been
used to produce the sample

I This implies:
I Knowing the sample frame (the finite population from which

the sample is drawn)
I Knowing the selection process for the observations (what rules

drive the random sampling procedure)
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Random samples

A random sample is a sample with the following characteristics
(see Lumley 2010):

1. Every individual i in the sample frame has a non-zero
probability πi to end up in the sample

2. We can calculate this probability for every unit in the sample
3. Every pair of individuals i and j in the sample frame have a

non-zero probability πij to end up together in the sample
4. We can calculate this probability for every pair of units in the

sample

I Note that if individuals are sampled independently from each
other, then πij = πiπj
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Nonrandom samples

I When conditions 1 and 2 are not met, we have a nonrandom
sample

I In nonrandom samples
I We might not know the sampling frame

I E.g. we take everyone who shows up in the lab
I We might not be able to calculate the probabilities of selection

I E.g. we use snowball sampling

I Nonrandom samples are very common in social science
I We can still use them to draw a model-based inference, under

certain conditions (see Sterba 2009)
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Simple random samples

I In a simple random sample we choose units at random from
the entire population

I The probability of inclusion for all units is πi = ni/Ni
I where ni is the sample size and Ni the size of the sample frame

I Such probabilities serve as the basis to calculate sampling
weights

I Weights are then calculated as 1/πi for each unit i
I They reflect how many units in the sample frame each

observation in the sample represents
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Sampling weights in simple random samples (2)

I Example: we take a random sample of 1,000 respondents from
a sample frame of 100,000 individuals

I For each individual, π = 1000/100000 = 0.01
I Then 1/0.01 = 100
I Every respondent represents 100 people in the sample frame
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Stratified samples

I We divide the population into groups that are
I Internally homogeneous (with respect to specific characteristics)
I Mutually exclusive
I Collectively exhaustive

I We draw a random sample within each group
I This way we make sure that observations in each stratum end

up in the sample
I Obviously, we need to know the stratum membership for each

observation before we contact them
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Stratified samples (2)

I Stratified samples increase the precision of the estimated
parameters

I They tend to have smaller standard errors than in simple
random samples

I But only when the variables for which we estimate the
parameter are predicted by the variables used to stratify

I Why?
I The precision of an estimate is always a function of the amount

of information that we have
I In stratified samples, the mere presence of an observation in the

sample conveys information about some characteristics of that
observation
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Weights in stratified samples

I Stratified samples are simple random samples drawn within
each stratum

I Hence, the probability of selection for an individual i in a
stratum s is πis = nis/Nis

I where nis is the sample size and Nis the population size within
the stratum s
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Cluster sampling

I Using a random sample of the entire population may be
difficult in case surveys are conducted face-to-face

I An alternative is to divide the population into clusters
(e.g. districts) and take a random sample of clusters

I Then we can either:
I Take all units inside of the cluster (single-stage sampling)
I Sample further (multistage sampling)
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Cluster sampling (2)

I Unlike stratified sampling, cluster sampling decreases the
precision of the estimated parameters

I Why?
I People in the same cluster tend to be more similar to one

another (more so than people from different clusters)
I Formally, values of respondents from the same cluster tend to

be more correlated
I With a clustered sample, the correlation between units will be

on average higher
I Hence, the information that we get from each respondent will

be a bit less than with a random sample of the full population
I This is less of a problem the more the clusters are similar to

one another
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Weights in clustered samples

I In single-stage cluster sampling, the probability πi that an
individual i is sampled is equivalent to the probability πc that
the cluster c to which the individual belongs is sampled

I Where πc = nc/Nc
I nc is the number of sampled clusters
I Nc is the total number of clusters in the sample frame

I In multistage sampling, πi is also a function of the probability
πic that i is sampled within the cluster c so that πi = πcπic

I Where πic = nic/Nic
I nic is the sample size
I Nic is the population size within the cluster c
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What do we do with weights?

I We may need weights to calculate sample statistics, especially
if we want to obtain descriptive statistics about the sample

I For instance, if we have a stratified sample, weights allow us to
compute unbiased and efficient (i.e. with high precision)
parameter estimates

I We can adjust the sample weights to correct for deviations of
the sample from some (known) parameters of the population
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Horvitz-Thompson estimator

I Estimates of the population total are the basis for most other
more complex statistics

I The Horvitz-Thompson estimator is a method used to calculate
the population total (and its standard error)

T̂X =
n∑

i=1

1
πi

Xi

I Where:
I Xi is the measurement of variable X for respondent i
I πi is the probability of inclusion for respondent i
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Horvitz-Thompson estimator (2)

I From here we can obtain, for instance, the estimated
population mean of X by dividing T̂X by the population size
N

µ̂X = 1
N

n∑
i=1

1
πi

Xi

I Which in a simple random sample, is equivalent to the sample
average

µ̂X = 1
n

n∑
i=1

Xi

I In a stratified sample, the formula for µ̂X produces what is
often called the weighted mean of X , which is an unbiased
and efficient estimator of the population mean
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Post-stratification

I Suppose we have a sample where females are 48% and males
are 52%, but we know that in the population females are 52%
and males are 48%

I If our sample was stratified on sex, this difference in proportion
would be reflected in the weights

I However
I The sample can not be stratified on everything
I Nonresponse patterns may be different between groups
I Group proportions in the sample may end up being different

from the ones in the population by chance

I Even in these cases, we can adjust the weights so that groups
have the same proportion that they would have in a stratified
sample

I This adjustment is called post-stratification
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Post-stratification (2)

I When we apply post-stratification, we substitute the sampling
weights 1/πi with gi/πi

I Where gi = Nk/N̂k
I Nk is the population size in the group (or stratum) k
I N̂k is the Horvitz-Thompson estimator of the population size in

the group k

I In other words, we change the values of the weights so that the
group size in the sample matches the group size in the
population

29 / 32



Raking

I We may need post-stratification to be performed for more than
one variable

I This is more often the rule than the exception
I Ideally we would need a complete cross-classification of the

variables
I E.g. Males of age 18-24 and low education, males of age 18-24

and high education, etc.

I However, some resulting combinations may be so untypical that
nobody ends up sampled in those categories

I Raking is an iterative procedure that allows to post-stratify on
multiple grouping factors without the need for a full
cross-classification
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Final remarks

I Note that the use of weights and of post-stratification
adjustments is necessary to have unbiased estimates of
population parameters under a design-based inference paradigm

I When we make a model-based inference, what counts is that
our model is correctly specified

I This usually implies
I Assuming the correct data generating process for the outcome

variable
I Assuming a correct specification for the function predicting the

outcome variable

I In regression models, we often include as predictors the
variables that in design-based inference we use to post-stratify
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