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Sources of error in surveys
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Representation error

v

The difference between the values that we observe in the
sample and the true values in the population
It has many sources

v

» Coverage, Sampling, Non-response

v

Sampling is arguably the most relevant
However, a similar logic applies to all of them

v
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Two types of error

» Bias: when the deviation from the true value systematically
goes in a specific direction
» E.g. We want to know whether people liked the new Star Wars

movie
» We interview people leaving the Opera house after a Wagner's

play
» Qur sample will probably show lower appreciation of the movie

than the average moviegoer
» Variability: when the deviation from the true value is a
random incidence

» We sample 100 people from the phone list of Berlin, and ask
them their attitude towards EU integration
» The next day we draw other 100 people from the same list, and

ask the same question
» Most likely figures won't be identical
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Sampling and variability
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Standard error

» Variability between samples is reflected in the variability within
the sample

» In fact, the standard error of an estimated parameter is
interpreted as the standard deviation of such estimate across
different independent samples

> It is calculated from the variance of the parameter in the
sample

> It corrects by the number of observations

» The more observations we have, the more information we have,
and the more precise is our estimate
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1. Reduce the bias of the parameter estimates
2. Increase the precision of the parameter estimates

» We can do a lot to reach these goals when planning the data
collection

> As a less optimal solution, we can also adjust the data after the
collection, in order to make them more resemblant of the
population
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On inference, again

» We saw two inferences that we make when we work with survey
data:
1. From answers to questions to individual characteristics
2. From samples to populations
> In statistics, there is a distinction between model-based and

design-based inference
» To a certain extent, these two types mirror the two inferences
we make with survey data
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Model-based inference

> Inferences that require us to make assumptions regarding the
process that generated the data
» Assumptions are theories
» We assume/theorize that a dichotomic variable (e.g. voting/not
voting) has been generated by a Bernoulli distribution
» We assume/theorize that an outcome is a function of some
predictors

> In fact we do not know what model generated the data, but we
offer an approximation of reality with our theory

> As long as our assumptions are correct, our results can be
generalized to other situations where the same process is at
work
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Model-based inference (2)

» Maximum Likelihood estimation is a classic example of
model-based inference

» Our sample is assumed to be a realization of an infinite
population that follows a given theoretical distribution

» Observations in the sample are linked to observations outside
the sample by the assumption that they all come from the
same distribution

» The parameters that we estimate from the sample are then our
best guess about the values of the true parameters in the
population given the data

» The sample does not need to be random, as long as we control
by possible factors that make it different from the population
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Model-based inference and measurement

» When we model a survey outcome (e.g. the response to a logic
quiz) we assume that it has been produced by a random
process that we theorize (e.g. intelligence)

> In this framework, both interpreting the output of a regression
and the parametes of the distribution of a survey variable imply
making a model-based inference

» The idea that measurement can be conceptualized as a
statistical model where an observed outcome is a function of a
hypothesized (latent) process is behind most psychometric
methods
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Design-based inference

» Example: a randomized experiment

vV vy VvVvYy

We want to see if a drug cures depression

We take a pool of subjects with depression

We assign them randomly to either one of two groups

To the subjects in one group we give the actual drug, to the
others we give a placebo

We keep them all in a clinic where they have the exact same
treatment in all other respects
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Design-based inference (2)

> In a randomized experiment:

1. We know which subjects have been given the treatment
2. We know that the only thing that differs between groups is the
treatment itself

» What allows us to make a valid inference in experiments is
random assignment
» To make sure that the only systematic difference between the

two groups is the occurrence of the treatment, we must assign
units randomly to one group or the other

> In other words, we know that each unit has equal probability to
end up in either one of the two groups
» This knowledge is the central point of design-based inference
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Design-based inference in surveys

» Design-based inference allows us to draw conclusions about a
variable in the the target population by looking at a sample
and without assuming an underlying generative model

> In other words, we can draw descriptive evidence directly from
the sample to the population

> To be able to do so, we need to know the design that has been
used to produce the sample
» This implies:
» Knowing the sample frame (the finite population from which

the sample is drawn)
» Knowing the selection process for the observations (what rules

drive the random sampling procedure)
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Random samples

A random sample is a sample with the following characteristics
(see Lumley 2010):

1. Every individual i in the sample frame has a non-zero
probability 7; to end up in the sample

2. We can calculate this probability for every unit in the sample

3. Every pair of individuals / and j in the sample frame have a
non-zero probability 7 to end up together in the sample

4. We can calculate this probability for every pair of units in the
sample

> Note that if individuals are sampled independently from each
other, then Tij = T
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Nonrandom samples

» When conditions 1 and 2 are not met, we have a nonrandom
sample
» In nonrandom samples

» We might not know the sampling frame
> E.g. we take everyone who shows up in the lab
» We might not be able to calculate the probabilities of selection
» E.g. we use snowball sampling
» Nonrandom samples are very common in social science

» We can still use them to draw a model-based inference, under
certain conditions (see Sterba 2009)
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Simple random samples

> In a simple random sample we choose units at random from
the entire population
» The probability of inclusion for all units is m; = n;/N;

» where n; is the sample size and N; the size of the sample frame

» Such probabilities serve as the basis to calculate sampling
weights

» Weights are then calculated as 1/, for each unit i

» They reflect how many units in the sample frame each
observation in the sample represents
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Sampling weights in simple random samples (2)

v

Example: we take a random sample of 1,000 respondents from
a sample frame of 100,000 individuals

For each individual, = = 1000/100000 = 0.01

Then 1/0.01 = 100

Every respondent represents 100 people in the sample frame

v vy
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Stratified samples

> We divide the population into groups that are

» Internally homogeneous (with respect to specific characteristics)
» Mutually exclusive
» Collectively exhaustive

» We draw a random sample within each group

» This way we make sure that observations in each stratum end
up in the sample

» Obviously, we need to know the stratum membership for each
observation before we contact them
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Stratified samples (2)

» Stratified samples increase the precision of the estimated
parameters

» They tend to have smaller standard errors than in simple
random samples

» But only when the variables for which we estimate the
parameter are predicted by the variables used to stratify

> Why?

» The precision of an estimate is always a function of the amount
of information that we have

» In stratified samples, the mere presence of an observation in the
sample conveys information about some characteristics of that
observation
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Weights in stratified samples

» Stratified samples are simple random samples drawn within
each stratum
» Hence, the probability of selection for an individual i in a
stratum s is 7;s = njs/Njs
» where njs is the sample size and N;s the population size within
the stratum s
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Cluster sampling

» Using a random sample of the entire population may be
difficult in case surveys are conducted face-to-face
» An alternative is to divide the population into clusters
(e.g. districts) and take a random sample of clusters
> Then we can either:
» Take all units inside of the cluster (single-stage sampling)
» Sample further (multistage sampling)
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Cluster sampling (2)

> Unlike stratified sampling, cluster sampling decreases the
precision of the estimated parameters
> Why?

» People in the same cluster tend to be more similar to one
another (more so than people from different clusters)

» Formally, values of respondents from the same cluster tend to
be more correlated

» With a clustered sample, the correlation between units will be
on average higher

» Hence, the information that we get from each respondent will
be a bit less than with a random sample of the full population

» This is less of a problem the more the clusters are similar to
one another
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Weights in clustered samples

> In single-stage cluster sampling, the probability 7; that an
individual i is sampled is equivalent to the probability 7. that
the cluster ¢ to which the individual belongs is sampled

Where . = n./N,

nc is the number of sampled clusters

N is the total number of clusters in the sample frame

v

v

v

> In multistage sampling, 7; is also a function of the probability
Tic that i is sampled within the cluster ¢ so that m; = wcmjc
» Where Tic = I”I,'C/N,'c
> njc is the sample size
» N is the population size within the cluster ¢
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What do we do with weights?

» We may need weights to calculate sample statistics, especially
if we want to obtain descriptive statistics about the sample

» For instance, if we have a stratified sample, weights allow us to
compute unbiased and efficient (i.e. with high precision)
parameter estimates

» We can adjust the sample weights to correct for deviations of
the sample from some (known) parameters of the population
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Horvitz-Thompson estimator

» Estimates of the population total are the basis for most other

more complex statistics
» The Horvitz-Thompson estimator is a method used to calculate

the population total (and its standard error)
A no1
Tx=Y —X
=1 i

» Where:

» X; is the measurement of variable X for respondent i
» m; is the probability of inclusion for respondent i
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Horvitz-Thompson estimator (2)

» From here we can obtain, for instance, the estimated
population mean of X by dividing Tx by the population size
N n

1 1
Ao b 2 x
Hmx N ; T i

» Which in a simple random sample, is equivalent to the sample

average
1 n

tix = — ZXi
ni=

> In a stratified sample, the formula for ii’x produces what is
often called the weighted mean of X, which is an unbiased
and efficient estimator of the population mean
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Post-stratification

» Suppose we have a sample where females are 48% and males
are 52%, but we know that in the population females are 52%
and males are 48%

> If our sample was stratified on sex, this difference in proportion
would be reflected in the weights

> However

» The sample can not be stratified on everything
» Nonresponse patterns may be different between groups

» Group proportions in the sample may end up being different
from the ones in the population by chance

» Even in these cases, we can adjust the weights so that groups
have the same proportion that they would have in a stratified
sample

» This adjustment is called post-stratification
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Post-stratification (2)

» When we apply post-stratification, we substitute the sampling
weights 1/7; with g;/7;
» Where g; = Nk/Nk
» N is the population size in the group (or stratum) k

» Ny is the Horvitz-Thompson estimator of the population size in
the group k

> In other words, we change the values of the weights so that the

group size in the sample matches the group size in the
population

29/32



» We may need post-stratification to be performed for more than
one variable

» This is more often the rule than the exception

> Ideally we would need a complete cross-classification of the
variables

» E.g. Males of age 18-24 and low education, males of age 18-24
and high education, etc.

> However, some resulting combinations may be so untypical that
nobody ends up sampled in those categories

» Raking is an iterative procedure that allows to post-stratify on
multiple grouping factors without the need for a full
cross-classification
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Final remarks

> Note that the use of weights and of post-stratification
adjustments is necessary to have unbiased estimates of
population parameters under a design-based inference paradigm
» When we make a model-based inference, what counts is that
our model is correctly specified
» This usually implies
» Assuming the correct data generating process for the outcome
variable
» Assuming a correct specification for the function predicting the
outcome variable

> In regression models, we often include as predictors the
variables that in design-based inference we use to post-stratify
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